Enhancement in electron transport and light emission efficiency of a Si nanocrystal light-emitting diode by a SiCN/SiC superlattice structure

نویسندگان

  • Chul Huh
  • Bong Kyu Kim
  • Byoung-Jun Park
  • Eun-Hye Jang
  • Sang-Hyeob Kim
چکیده

We report an enhancement in light emission efficiency of Si nanocrystal (NC) light-emitting diodes (LEDs) by employing 5.5 periods of SiCN/SiC superlattices (SLs). SiCN and SiC layers in SiCN/SiC SLs were designed by considering the optical bandgap to induce the uniform electron sheet parallel to the SL planes. The electrical property of Si NC LED with SiCN/SiC SLs was improved. In addition, light output power and wall-plug efficiency of the Si NC LED with SiCN/SiC SLs were also enhanced by 50% and 40%, respectively. This was attributed to both the formation of two-dimensional electron gas, i.e., uniform electron sheet parallel to the SiCN/SiC SL planes due to the conduction band offset between the SiCN layer and SiC layer, and an enhanced electron transport into the Si NCs due to a lower tunneling barrier height. We show here that the use of the SiCN/SiC SL structure can be very useful in realizing a highly efficient Si NC LED.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermally enhanced blue light-emitting diode

Articles you may be interested in Performance enhancement of blue light-emitting diodes with a special designed AlGaN/GaN superlattice electron-blocking layer Appl. Raman and emission characteristics of a-plane InGaN/GaN blue-green light emitting diodes on r-sapphire substrates J. Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting d...

متن کامل

Effect of temperature and strain on the optical polarization of (In)(Al)GaN ultraviolet light emitting diodes

Related Articles Silicon nanoparticle-ZnS nanophosphors for ultraviolet-based white light emitting diode J. Appl. Phys. 112, 074313 (2012) Strong light-extraction enhancement in GaInN light-emitting diodes patterned with TiO2 micro-pillars with tapered sidewalls Appl. Phys. Lett. 101, 141105 (2012) Electron injection in magnesium-doped organic light-emitting diodes Appl. Phys. Lett. 101, 141102...

متن کامل

Influences of Device Architectures on Characteristics of Organic Light-Emitting Devices Incorporating Ambipolar Blue-Emitting Ter(9,9-diarylfluorenes)

In this article, we report the studies of various device architectures of organic lightemitting devices (OLEDs) incorporating highly efficient blue-emitting and ambipolar carriertransport ter(9,9-diarylfluorene)s, and their influences on device characteristics. The device structures investigated include single-layer devices and multilayer heterostructure devices employing the terfluorene as one...

متن کامل

Investigation of the Effect of Recombination on Superluminescent Light-Emitting Diode Output Power Based on Nitride Pyramid Quantum Dots

In this article, the temperature behavior of output power of superluminescent light-emitting diode (SLED) by considering the effect of non-radiative recombination coefficient, non-radiative spontaneous emission coefficient and Auger recombination coefficients has been investigated. For this aim, GaN pyramidal quantum dots were used as the active region. The numerical method has been used to sol...

متن کامل

Deep Ultraviolet AlGaInN-Based Light-Emitting Diodes on Si(111) and Sapphire

Ultraviolet light-emitting diodes (LEDs) with emission wavelength as short as 280 nm, grown by gas source molecular beam epitaxy with ammonia, are described. The typical multi-quantum well (MQW) structure LED consists of an AlN buffer layer deposited on Si(111) or sapphire, followed by a (Al)GaN buffer layer and two superlattice structures, nand p-type, with the MQW active region placed between...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013